Ramsey numbers of ordered graphs

نویسندگان

  • Martin Balko
  • Josef Cibulka
  • Karel Král
  • Jan Kyncl
چکیده

An ordered graph G< is a graph G with vertices ordered by the linear ordering <. The ordered Ramsey number R(G<, c) is the minimum number N such that every ordered complete graph with c-colored edges and at least N vertices contains a monochromatic copy of G<. For unordered graphs it is known that Ramsey numbers of graphs with degrees bounded by a constant are linear with respect to the number of vertices. In contrast with this result we show that there are arbitrarily large ordered matchings M<(n) on n vertices for which R(M<(n), 2) grows super-polynomially in n. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain polynomial in another ordering. We also prove that for every ordered graph its ordered Ramsey number grows either polynomially or exponentially in the number of colors. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by Károlyi et al.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramsey Numbers for Partially-ordered Sets

We present a refinement of Ramsey numbers by considering graphs with a partial ordering on their vertices. This is a natural extension of the ordered Ramsey numbers. We formalize situations in which we can use arbitrary families of partially-ordered sets to form host graphs for Ramsey problems. We explore connections to well studied Turán-type problems in partially-ordered sets, particularly th...

متن کامل

The Ramsey numbers of large trees versus wheels

For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.

متن کامل

Minimal Ordered Ramsey Graphs

An ordered graph is a graph equipped with a linear ordering of its vertex set. A pair of ordered graphs is Ramsey finite if it has only finitely many minimal ordered Ramsey graphs and Ramsey infinite otherwise. Here an ordered graph F is an ordered Ramsey graph of a pair (H,H ′) of ordered graphs if for any coloring of the edges of F in colors red and blue there is either a copy of H with all e...

متن کامل

Ordered Ramsey numbers

Given a labeled graph H with vertex set {1, 2, . . . , n}, the ordered Ramsey number r<(H) is the minimum N such that every two-coloring of the edges of the complete graph on {1, 2, . . . , N} contains a copy of H with vertices appearing in the same order as in H. The ordered Ramsey number of a labeled graph H is at least the Ramsey number r(H) and the two coincide for complete graphs. However,...

متن کامل

Ordered and partially-ordered variants of Ramsey's theorem

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii PRELIMINARIES AND NOTATION . . . . . . . . . . . . . . . . . . . . . ix CHAPTER 1. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The Graph Ramsey Number . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Arrow Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 The Dir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2015